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This paper introduces data mining technology designed to classify agricultural fields under different manure/
fertiliser application strategies. During the summer of 2000, airborne hyperspectral data were collected three
times at two field sites in southwestern Quebec, Canada. One field site contained 24 plots (20m by 24m) that
were amended with manure treatments and planted with maize and soya beans. The second field site contained
18 plots (18�5m by 75m) that received chemical fertilisers and were planted with maize. Reflectances of 71
wave bands of hyperspectral data (400 nm for violet to 940 nm for near infrared) were collected from 5
subplots within each of the 42 plots. The decision-tree algorithm of data mining technology was used to
distinguish between manure and chemical fertiliser treatments. The decision-tree algorithm divides the data to
reduce the deviance, and classifies them into the pre-defined categories as many tree branches. The success of
the classification rate was as high as 91% for the early planting season, 99% for the mid-planting season, and
95% for the late planting season. The accuracy of the results demonstrates that data mining technology could
be used for remote-sensing imagery classification of fertiliser applications. # 2002 Silsoe Research Institute. Published

by Elsevier Science Ltd. All rights reserved
1. Introduction

The application of animal manure to agricultural land
has been viewed as an excellent way to recycle nutrients
and organic matter that can support crop production
and maintain, or improve, soil quality. Generally, soil
organic matter and biological activity increase, and soil
physical properties such as aggregation and tilth
improve following manure applications (Hafez, 1974;
Sommerfeldt et al., 1988; Haynes & Francis, 1993).
Storing more carbon in soils (carbon sequestration) has
been proposed as one way of mitigating atmospheric
CO2 increases. Manure could have a role in carbon
sequestration due to its positive effects on crop
production (organic residues from crops are the source
of new soil carbon) and by improving soil aggregation.
Organic matter is distributed in aggregates, and its
resistance to decomposition depends on its physical
location in aggregates and aggregate stability (Adu &
Oades, 1978; Six et al., 1998). Numerous studies have
found the proportion of water-stable macroaggregates
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increases soon after soils begin receiving manure, and it
has been proposed that long-term manure applications
will increase the amount of organic matter associated
with soil minerals and improve microaggregate stability
(Aoyama et al., 1999).

Despite the many positive consequences of applying
manure to agricultural soils, a major concern in areas of
high animal density is the potential for increased
atmospheric and water pollution resulting from impro-
per storage or application of manure. In areas where
many intensive livestock operations exist, manure
applications are often limited to land in the vicinity of
the operations, with the result that manure is often
applied with high frequency and high rates. As a result,
the nearest land may be amended with large quantities
of manure on a frequent basis. The export of N from
manure-amended soils through greenhouse gas emis-
sions and transport processes, such as leaching, surface
runoff and erosion have been well documented (Adams
et al., 1994; Chang & Janzen, 1996; Goss & Goorahoo,
1995; Zebarth et al., 1999). Migration of P from
1 # 2002 Silsoe Research Institute. Published by
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manure-amended soils to ground and surface waters has
been linked to eutrophication of aquatic systems
(Sharpley et al., 1994; Heathwaite, 1997).

Clearly, manure applications must be managed care-
fully to minimise nutrient export from agricultural
systems into the atmosphere and waterways. Policy-
makers and regional planners require information on
the amount of agricultural land that receives manure to
identify areas at risk for water pollution and develop
new guidelines for the siting of intensive livestock
operations, which will improve manure utilisation on
agricultural land. At present, this type of information is
collected by surveying livestock producers, a time-
consuming and costly practice that generally provides
information for a small percentage of the total
producers operating in a region. New technologies to
rapidly collect such information are urgently needed.

Remote sensing by aircraft or satellite can provide
information on agronomic practices at the scale of an
individual producer’s fields. Hyperspectral images,
which are based on reflectances from the visible and
near-infrared regions of the electromagnetic spectrum,
have been used successfully to monitor crop cover, crop
health and soil moisture in agricultural fields (Barnes &
Baker, 2000; Chang et al., 2001; Chen et al., 2000;
Lillesand & Kiefer, 1994). Thenkabail et al. (2000)
recommended optimal hyperspectral wave bands, wave
centres, and wave widths in the visible and near-infrared
spectral ranges to identify crop characteristics and
vegetation indices for cotton, potato, soya beans, maize,
and sunflower. Crop residues could be differentiated
from soils using spectral reflectance (Daughtry, 2001;
Nagler et al., 2000). However, hyperspectral images
have not been used previously to detect impacts of
manure application to agricultural fields. This technol-
ogy, if applicable, could be used to rapidly map the
spatial distribution of manure applied across many
agricultural fields. Such knowledge could lead to
significant environmental and economic benefits.

However, accurate interpretation of hyperspectral
imagery from agricultural fields is difficult due to
spectral mixing (Barnes & Baker, 2000; Lillesand &
Kiefer, 1994). Lately, machine learning algorithms, such
as data mining, are being used for classification
problems (Teorey, 1999; Witten & Frank, 2000). These
technologies, i.e. decision trees, neural networks, asso-
ciation analysis, and instance-based learning, search and
discover knowledge from the data. Decision trees recur-
sively split input data into branches to reduce the deviance
within the data in each branch until all of the data are
assigned to proper categories (Han & Kamber, 2001).
Neural networks generate the implicit relationship be-
tween the input data and the outputs through a group of
parallel computation units and their inter-connections
(Gurney, 1997; Yang et al., 2000). Association analysis
determines the association rules between the input data
attributes and the output values, and then selects the
most frequently applied rules from other alternatives
(Han & Kamber, 2001). Instance-based learning stores
instance data with specific output attributes, and groups
the input data with the most proper and closest instance
data in the same class (Witten & Frank, 2000).

Among the above data mining methods, decision-tree
algorithms have become popular (Flamig, 2000; Witten
& Frank, 2000). They not only provide an efficient
classification method, but have the additional advantage
of providing ease of interpretation of the rules used to
filter data sets to their appropriate categories, while
simultaneously bringing to light the relative importance
of different variables in the system studied.

The primary goal of this study was to explore the use
of hyperspectral imagery in differentiating fields receiv-
ing organic manure from those with chemical fertilisers.
Additionally, the imagery was used to identify maize
and soya bean crops as a function of fertiliser
treatments. The hyperspectral data were collected with
a Compact Airborne Spectrographic Imager (Borstad
Associates Ltd., Sidney, Canada) sensor on an airborne
platform from two experimental fields, one for maize
and soya bean applied with organic manure and another
for maize with chemical fertilisers. Several models
utilising the classification and regression trees (C&RT)
method, one of the decision-tree algorithms, were used
to classify these hyperspectral data. The models were
trained to recognise the fertiliser-application strategies
and the crop type for the experimental plots using
different dates of data collection. The study evaluated
the capability of the decision-tree models for the
classification of fertiliser-application strategy on differ-
ent dates of a growing season.

2. Materials and methods

2.1. Field experiments

The hyperspectral data were obtained over two adjacent
fields, receiving organic and chemical fertilisers, at the
Macdonald Campus Experimental Farm, in southwestern
Quebec, Canada. The soil was a Typic Endoaquent (St.
Amable and Courval series) with sandy loam or loamy
sand surface textures. Field A (organic manure) contained
24 plots (20m by 24m): 16 were assigned randomly
to maize (Zea mays L.) and eight to soya beans (Glycine

max (L.) Merr.). Field B (chemical fertiliser) contained
18 plots (18�5m by 75m), all planted with maize.
The experimental plots were not specifically established
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for this study, so the number of maize and soya bean
plots were not equal.

In 2000, Field A was seeded on 30 May, whereas Field
B was seeded on 8 May. However, it was observed that
the relatively cold and wet spring significantly delayed
the germination of maize by 2–3 weeks in Field B. The
maize in Field A had grown to the same developmental
stage as maize in Field B by mid-June. Fertilisers were
applied at the seeding dates in both fields. Organic
fertilisers, composted cattle manure, were applied to
Field A. Cattle manure (Les Composts du Qu!eebec) was
applied prior to seeding at a rate of 22mgha�1 (wet
weight), composed of, on average, 15�4 g[N] kg�1 (dry
weight basis), 3�3 g[P] kg�1, 18�7 g[K] kg�1 with a moist-
ure content of 0�68 kg[H2O] kg�1. Chemical fertilisers,
100 kg[P2O5] ha

�1 on all plots and 39 kg[N] ha�1 as
diammonium phosphate (18-46-0) banded at seeding,
were applied to Field B.

Hyperspectral images with a resolution of 2m by 2m
were taken on 30 June, 5 August, and 25 August, 2000
using a Compact Airborne Spectrographic Imager
(Borstad Associates Ltd., Sidney, Canada). Proper
radiometric, geometric, and atmospheric corrections
were applied on the collected hyperspectral data.
Seventy-one wave bands were measured: six in the
violet range (408�73–445�79 nm), seven in the blue range
(453�21–497�90 nm), ten in the green (505�37–572�82 nm),
two in the yellow (580�34–587�86 nm), four in the orange
(595�39–618�02 nm), ten in the red (625�57–693�76 nm)
and 32 in the near infrared (701�36–939�33 nm). Band
widths slightly varied from 4�27 nm in the violet to
4�40 nm in the near infrared. From the hyperspectral
images, each plot was visually divided into five subplots
of equal size to not only obtain more data points per
treatment but also properly represent the detailed
attributes within each plot. The reflectances at each
wave band for a given subplot were averaged among
all pixels clearly associated with the subplot (i.e. pixels
not overlapping other subplots). A set of 120 data points
(5 subplots by 24 plots) were collected for Field A and
90 data points (5 subplots by 18 plots) for Field B, each
of which contained the average reflectance values of the
71 wave bands. The average reflectances of subplots
were used in the development of the decision-tree
models.

2.2. Description of the decision-tree algorithm

AnswerTree version 2.1 was used to generate decision
trees (SPSS Inc., Chicago, IL, USA). This data mining
software package was run on a personal computer (PC)
with a Pentium II-600 microprocessor, 28GB hard
disk space, 128MB of random access memory (RAM),
under the Windows 2000 operating system. The
C&RT (Breiman et al., 1984) was chosen from several
decision-tree algorithms offered in the package for
this study because the input variables, the reflectance
of wave bands, were continuous, as opposed to
categorical.

The C&RT is a recursive algorithm that splits the
entire data set from the root node into smaller subsets to
reduce the deviance and correct for the total sum of the
squares. In the tree structure, each subset is termed a
node. A mother node contains data that can be split into
another subset, called the child node. When node data
cannot be split into additional subsets, it is called a
terminal node. Once the first subset has been created, the
algorithm repeats the procedure for each subset until all
data are categorised as terminal nodes. Figure 1 shows
the general architecture of a C&RT model.
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A search for a split point is conducted over all input
variables, and the reduction in deviance D(total) is
maximised as follows:

D totalð Þ ¼
X

Yi � Ybarð Þ2 ð1Þ

where: Yi is the value of the target variable and Ybar is
the mean for the node. At each node where splitting of
data into two mutually exclusive subsets takes place, the
reduction in deviance D is as follows:

Dj;total ¼ D totalð Þ � D Lð Þ þ D Rð Þð Þ ð2Þ

where, for split j at this node, D(L) and D(R) are the
deviancies of the left and right subsets. Thus, the C&RT
algorithm first searches for Dmax over all input variables
and possible split points, where the number of data in
the left and right subsets is larger than a pre-defined
minimum threshold. Moreover, for the second and
subsequent splits, D(N) should be larger than
0�01�D(total). Thus, if the deviance of a node is not
greater than 1% of the deviance of the original data set,
the node is not split any further and becomes a terminal
node. Furthermore, a maximum number of tree levels, a
minimum number of data set for the mother nodes and a
minimum number of data set for the child nodes need to
be pre-defined. When the tree level reaches the pre-
defined maximum level or the data, either before
splitting in the mother node or after splitting in the
child node, reaches the pre-defined minimum amount,
the nodes are forced to be terminal nodes even if the
data in these nodes can potentially be split again. The
above conditions are termed stopping rules.

Except for obtaining the final decision-tree model,
stopping rules are set to prevent the model from
overfitting the training data. Moreover, the decision
tree can be pruned to reduce the tree level if the tree is
judged to already overfit the training data. Overfitting of
the training data can make the decision trees fit the
training data perfectly, but poorly fit other independent
data.

For the categorical output variables, the suggested
splitting criterion is the Gini impurity g (Breiman et al.,
1984; SPSS, 1998), defined as follows:

g mð Þ ¼ 1 �
X

i

p2 i mjð Þ ð3Þ

where: g is the Gini impurity and i is the number of
output categories at the node m, p is the proportion of
data sent from the mother node m to the child node.
When all of the data in the node m can be classified as
one category, g(m) is equal to zero, since the summation
is of only one term whose value is one. Based on this
criterion, the decision tree continues to build more tree
levels and to classify the data into more categories, until
one of the stopping rules is satisfied.
2.3. Decision-tree model development

In this study, three types of models were developed to
classify data from the experimental plots. Since the
atmospheric environment, weather, and lighting condi-
tion varied from date to date, all of the decision-tree
models were developed for a single date respectively.
Each date of data collection would represent different
planting seasons (30 June for the early planting season, 5
August for the middle planting season, and 25 August
for the late planting season). In Model (1), the decision
trees were developed to distinguish plots receiving
organic manure (Field A) from those amended with
chemical fertilisers (Field B). In Model (2), the decision
trees were developed to differentiate maize plots (Fields
A and B) from the soya bean plots (Field A). In Model
(3), the decision trees were developed to identify three
types of plots: organic-manure-amended plots under
maize production (Field A), organic-manure-amended
plots under soya bean production (Field A), and
chemical-fertiliser-amended plots under maize produc-
tion (Field B). All 210 data from Fields A and B were
used for the development of Models (1) and (3). For the
development of Model (2), two submodels were
generated with a different training data set. Model (2a)
was developed with 120 data from Field A, while Model
(2b) was generated with all 210 data from Fields A and
B. Separate models were generated from the hyperspec-
tral data collected at each sampling date, for a total of
12 models that were trained and analysed.

Preliminary model runs showed that one of the
stopping rules was usually applied before the model
needed to grow more than five tree levels. It indicated
that no more than five tree levels were required to
classify the data, so the boundary for the maximum tree
level was set at five. The minimum number of data was
set at five for the mother nodes and two for the child
nodes. To precisely evaluate the performance of decision
trees, the decision-tree models were cross-validated
using the n-fold approach (SPSS, 1998; Weiss and
Kulikowski, 1991), where n is the number of data sets
into which the training data is going to split, with a
value for the sample size n of 10, as recommended by
Weiss & Kulikowski (1991). For the development of
each model, the training data were randomly split into
ten sets, with a random seed of 2 000 000 as the default
number, set by the software. A decision tree was then
generated from nine of the ten sets and validated by the
remaining data set. This process was repeated ten times
so that each data set was used to validate the model
once. The average recognition rate and standard error
for the cross-validation were calculated by the software
as conservative estimates of model accuracy (SPSS,
1998). After the cross-validation, a final decision tree
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was generated and tested with all the training data. The
success recognition rate and standard error for the final
decision tree was also calculated and reported as the
optimal estimation for model accuracy. The misclassi-
fication matrix for the final decision tree with all training
data was also presented and analysed.

3. Results and discussion

From generally high success classification rates for
cross-validation, as shown in Table 1, decision trees
successfully recognised the hyperspectral images for
different fertiliser application strategies and crop types
when the hyperspectral measurements of reflectance
were used as the inputs for the decision trees for image
classification. A model with a single classification
purpose could have a success recognition rate as high
as 99% for Model (1) and 100% for Model (2) (Table 1).
Even models with a multi-classification purpose such as
Model (3) could have a success classification rate as high
as 97% (Table 1). The results for cross-validation also
indicate that the success classification rate could be as
high as 86% for Model (1), 99% for Model (2) and 87%
for Model (3) (Table 1). However, the significant
variation in the success classification rates between
cross-validation and the final model, Model (1) had a
13% difference and Model (3) had a 10% difference,
indicated that the model performance for the classifica-
tion of fertiliser use would vary from plot to plot. This
type of classification could be difficult for some plots.

Model (2a) was developed with fewer data than
Model (2b), and the results indicate that more training
data improved crop classification, without overfitting
the data during the early stages of crop growth. The
success classification rate for cross-validation increased
from 64% in Model (2a) to 75% in Model (2b) for the
June 30 collection date presumably because more
training data was included in Model (2b) (Table 1).
Table
Results of success classification rates and

Date Classifi

Model (1) Model

Cross-
validation

Final
model

Cross-
validation

30 June 71 (0�03) 91 (0�02) 64 (0�04)
5 August 86 (0�02) 99 (0�01) 99 (0�01)
25 August 77 (0�03) 95 (0�02) 96 (0�02)

Number of subplots for
model development

210 120
Such an improvement indicates that, for the early
planting season, the model training might still be
insufficient and more training data should be collected
for better performance of the model.

Hyperspectral reflectance from crops early in the
season (i.e. 30 June) before canopy closes may have had
interference from weeds and soil. The classification
performances of decision trees in all models were highest
for the data collected on 5 August (middle planting
season), followed by data collected on 25 August (late
planting season) and 30 June (early planting season).
The optimal date for hyperspectral data collection
appeared to be in the middle planting season, when
plants were large enough that different crop species were
easily identified and hyperspectral reflectance from the
soil surface was still visible (i.e. not obscured by the
plants). Ideally, more measurements should have been
made to evaluate plant physiological developments,
such as leaf area index, leaf nitrogen, and photosynth-
esis rate, and support the results given in Table 1. In the
absence of these measurements, it can still be observed
that the decision-tree approach is successful in identify-
ing fertiliser treatments using the imagery collected in
the early planting season when the plants were quite
small.

There was more uncertainty associated with decision
trees generated from data that was classified by fertiliser
source than crop type at all sampling dates. Therefore,
the classification and misclassification matrix for data
collected on 5 August was generated to better under-
stand the variation associated with different fertilisers
and crops.

Table 2 indicated that the decision tree misclassified
only three of the120 subplots applied with both chemical
fertilisers and organic manure. For image classification,
the decision tree for Model (1) required nine wave bands
as split points. However, the split points might vary
according to different data-collecting dates and loca-
tions. The results showed that it was possible to
1
standard errors for decision-tree models

cation rate, % (standard error)

(2a) Model (2b) Model (3)

Final
model

Cross-
validation

Final
model

Cross-
validation

Final
model

94 (0�02) 75 (0�03) 93 (0�02) 59 (0�03) 83 (0�03)
100 (0�00) 99 (0�01) 100 (0�00) 87 (0�02) 97 (0�01)
98 (0�01) 98 (0�01) 99 (0�01) 78 (0�03) 95 (0�01)

210 210



Table 2
Classification and misclassification matrix for Model (1) with

hyperspectral data from 5 August 2000

Model outputs Actual classification outputs

Organic manure Chemical fertiliser

Organic manure 90 3
Chemical fertiliser 0 117

Wave bands selected by the model to split data: 423�53 nm
(violet), 430�95 nm (violet), 468�09 nm (blue), 490�44 nm (blue),
497�90 nm (blue), 580�34 nm (yellow), 655�83 nm (red),
693�76 nm (red), 724�20 nm (near infrared).
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accurately recognize the fertiliser-application strategy
from the remote-sensing images. It is hypothesized that
the hyperspectral response of a manure field is different
from that of an inorganically fertilised field due to
higher carbon contents and organic matters in the
former. Accurate results required hyperspectral infor-
mation from both plants and soils, as well as more
training data for fields where chemical fertiliser was
applied. In this study, the number of training data for
chemical fertiliser application (120 subplots) was higher
than for organic manure application (90 subplots).
Furthermore, a greater number of subplots applied with
chemical fertilisers were misclassified than were ones
applied with organic manure.

The decision trees generated to differentiate crop type
accurately classify hyperspectral images as maizes or
soya beans (Table 3). Regardless of the number of
training data, 120 for Model (2a) and 210 for Model
(2b), the number of misclassified plots was always zero.
Cross-validation results also indicated a very high
success classification rate of 99% (Table 1). Further-
more, there was only one wave band selected for the
split point, 724�20 nm of near infrared, for Models (2a)
and (2b). When the decision tree was trained for the data
collected on 25 August, the wave band selected for the
split point was 739�45 nm of near infrared, close to the
split point of 724�20 nm for 5 August. The less successful
classification results for 30 June could be caused by the
Table 3
Classification and misclassification matrix for Model (2) with

hyperspectral data from 5 August, 2000

Model outputs Actual classification outputs

Model (2a) Model (2b)
Maize Soya bean Maize Soya bean

Maize 80 0 170 0
Soya bean 0 40 0 40

Wave bands selected by the model to split data: 724�20 nm
(near infrared).
plant size being too small (i.e., insufficient hyperspectral
reflectance by the crops). The hyperspectral response of
the two crop types is different due to different leaf
properties and canopy structures.

The results show that the decision trees can simulta-
neously classify hyperspectral images from 210 subplots
into two different output categories, fertiliser source and
crop type (Table 4). One of the 90 maize subplots
receiving chemical fertiliser was misclassified as maize
with organic manure, and five of the 80 maize subplots
amended organic manure were misclassified as maize
with chemical fertiliser. Soya bean subplots receiving
organic manure were all classified correctly. The results
indicate that it was easier to differentiate maize plots
from the soya bean plots than to distinguish soils that
received chemical fertilisers from those amended with
organic manure. The split point selected to distinguish
crops in Model (2) was also selected for Model (3), but
the split points selected by the decision tree to
distinguish fertilisers in Model (1) were not identical to
those selected for Model (3) (Tables 2–4). It was
observed that wave bands at 423�53 and 490�44 nm were
selected for both Models (1) and (3). Overall, the
performance of the decision tree for Model (3) in
classifying data collected on 5 August into three
categories had a cross-validation success rate of 87%
(Table 1).

The results indicated that no more than 12 wave
bands of the 71 reflectance inputs were required for the
decision-tree model development. However, the wave
bands selected as critical inputs for the classification
rules varied from model to model, and from date to
date. More training data and further investigations are
required before the critical wave bands could be applied
universally in the classification rules. Future studies will
include the development of decision-tree models based
on more site-specific hyperspectral data from different
dates, years, and locations. This site-specific modelling
has the potential to efficiently recognize the type of
Table 4

Classification and misclassification matrix for Model (3) with

hyperspectral data from 5 August, 2000

Model outputs Actual classification outputs

Chemical/
Maize

Manure/
Maize

Manure/
Soya bean

Chemical/Maize 89 5 0
Manure/Maize 1 75 0
Manure/Soya bean 0 0 40

Wave bands selected by the model to split data: 423�53 nm
(violet), 460�65 nm (blue), 490�44 nm (blue), 686�17 nm (red),
724�20 nm (near infrared), 739�45 nm (near infrared).
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fertiliser uses in different locations. Such a recognition
can help to improve the precision and efficiency of
fertiliser use in agriculture, which will contribute to the
long-term economic and environmental sustainability of
this troubled industry.

4. Conclusions

Several decision tree models were developed to
classify hyperspectral data, collected on 30 June, 5
August and 25 August, 2000, from a maize/soya bean
field amended with organic manure and a maize field
amended with chemical fertilisers. The decision trees had
a 71–86% success rate in distinguishing fertiliser
sources, and a 64–99% success rate in classifying
different crop types correctly. A single decision tree
was developed to analyse output categories, fertiliser
source and crop type, simultaneously. The success
classification rate ranged from 59 to 87%. It was
determined that the best date for collecting hyperspec-
tral data for these types of classification is during the
middle growing season, such as early August, with a
planting date in May. During these dates, the hyper-
spectral data would generally represent the conditions of
both plants and soils.

The results show that the data mining technology
could be applied to remote-sensing image classification
to differentiate agricultural soils that receive organic
manure or chemical fertilisers, especially on the basis of
the results obtained with the first flight. Had measure-
ments on plant physiological developments been made
concurrently, more concrete conclusions about the
utility of the decision-tree approach could have been
established. Nevertheless, it appears that this technology
has potential to rapidly classify the agricultural land
base which receives organic and chemical fertilisers.
With accurate and fast classification results from the
decision trees, watersheds and regions at risk of
pollution from fertilisers can be easily located. At the
present time, this information can only be obtained by
detailed surveys and censuses of producers in areas of
interest. Data mining technology could greatly improve
the speed at which information on fertiliser use is
transmitted to extension agents, agricultural and envir-
onmental agencies, as well as local and regional policy-
makers. This technology has the potential to improve
fertiliser use and reduce pollution from the agricultural
sector.
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